
Science & Technology Infusion Lecture Series

 Uncertainty and Ensemble Forecast 
 Jun Du 

        SREF Development Team, EMC/NCEP/NOAA 

This lecture series provides a comprehensive review and discusses 
some general principles on ensemble forecasting to give readers a big 
picture about what is involved in this relatively new and rapidly 
developing branch of numerical modeling and prediction. 

Table of Content

Introduction 
1. Why is ensemble forecast needed?
2. What is ensemble forecasting aiming for?
3. How to build an ensemble prediction system (EPS)?

i. 1-Dimensional EPS
ii. 2-Dimensional EPS
iii. 3-Dimensional EPS

4. What products can be derived from an ensemble forecast?
5. What is the role of EPS post-processing?
6. How to evaluate the quality of an EPS and its forecasts?
7. How to communicate uncertainty and use probability in decision-

making?
8. What is the impact on downstream applications?
9. Shifting operational forecast paradigm
10. Future trend of ensemble development
11. Summary
References

Key Words: ensemble forecast, predictability, uncertainty, probability, deterministic, 
stochastic, evaluation, products, post-processing, decision making 

Citation:  Du, J., 2007:  Uncertainty and ensemble forecast.  Science & Technology Infusion
Lecture Series, 42 pp.  https://doi.org/10.25923/vpje-w924



Science and Technology Infusion Climate Bulletin       December 2007 2 

NOAA’s National Weather Service 
Office of Science and Technology

Introduction 
 In early days, weather forecast was indeed called probability and issued as probabilistic format. 

For example, Prof. Cleveland Abbe issued the first official “Weather Synopsis and Probabilities” on 
February 19, 1871 (NRC, 2006). Later on, due to the advancement and new knowledge achieved in the 
numerical weather prediction (NWP) as well as more observations available, scientists start to use 
single deterministic value to predict weather (still so today!). 

After Lorenz discovered chaotic nature of atmospheric behavior/phenomena in 1960s, some 
pioneering scientists started to seriously reconsider stochastic approaches in predicting weather and 
climate. Given the fact that intrinsic uncertainties exist in each steps of a prediction process, we have 
no way to know the ground truth in an exact fashion. Instead, a complete and faithful description of, 
say, initial condition and model physics must be in a probabilistic distribution form, which is stochastic 
in nature within a certain range of uncertainty. As a result of this and the chaotic nature of highly 
nonlinear numerical models (Lorenz, 1993), there might be a multiple of possible realizations for each 
forecast. In other words, a complete forecast must also be described in a probabilistic distribution with 
forecast uncertainty explicitly expressed but not in a single deterministic value! 

In 1969, Epstein (1969) first proposed a theoretical Stochastic-Dynamic approach to directly 
describe forecast error distributions (mean, variance and probability density function) in model 
equations. Unfortunately, it’s unrealistic to integrate such a system with limited computing power 
since the number of forecast equations required to be solved is huge for a real atmospheric system. 
Instead, Leith (1972) proposed a more practical Monte-Carlo approach with limited forecast members. 
Each forecast member is initiated with randomly perturbed, slightly different initial condition (IC). He 
pointed out that with as few as eight members, the average of member could give a best estimation of a 
forecast with adequate accuracy although more members might be needed for forecast variance 
estimation. With an analytical turbulence equation, Leith showed that Monte-Carlo method is a 
practical approximation to Epstein’s Stochastic-Dynamical approach. Leith’s Monte-Carlo approach is 
basically the traditional definition of ensemble forecasting although the content of this definition has 
been greatly expanded in the last 20 years to include the following: (a) perturbing all uncertain 
components in a state-of-the-art forecasting system such as physics, numeric and boundary forcing 
besides perturbing atmospheric ICs (observation and analysis), and (b) flow-dependent IC 
perturbations with dynamically growing structure rather than statistical, random perturbation (see Part 
3). 

As computing power increases, operational ensemble forecasting became a reality in early 1990s. 
Both NCEP and ECMWF (European Center for Medium-Range Weather Forecast) operationally 
implemented its own global model-based, medium-range ensemble forecast system in December 1992, 
respectively (Tracton and Kalnay, 1993; Toth and Kalnay, 1993; Mureau et. al., 1993; Molteni et. al., 
1996). At the same time, a few people realized that predictability issue is not only relevant to medium-
range but also to short-range forecasts and therefore started to research on regional model-based short-
range ensemble forecasting (Mullen and Baumhefner, 1994; Mullen and Du, 1994; Brooks et. al., 1995; 
Du et. al., 1997 and 2000; Mullen et. al., 1999). An operational Short-Range Ensemble Forecasting 
(SREF) system was under development and evaluation over the North American domain at NCEP 
since 1995 (Tracton and Du, 1998; Stendsrud et. al., 1999; Hamill and Colucci, 1997 and 1998; Hou et. 
al., 2001) and became a part of U.S. National Weather Service (NWS) real-time production suite in 
April 2001 (Du and Tracton, 2001) which is the first real-time operational regional ensemble system 
among major NWP centers in the world. A time-lagged ensemble forecasting approach was also 
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operationally used for seasonal prediction (9 months) at NCEP from 2004 based on a global model 
coupled with ocean (Saha et. al., 2006). 

Since the initial implementations of NCEP and ECMWF ensemble systems, ensemble approach 
has been widely accepted and actively pursued at almost all other major NWP centers around the globe 
such as Houtekamer et. al. (1996), Ebert (2001), Li and Chen (2002), Wang and Kann (2005), Eckel 
(2005), Chien et. al. (2006), Tennant et. al. (2007), Teixeira et. al. (2007) and Matsueda et. al. (2007). 
Research on ensemble forecasting also gained its strength since later 1990s and early 2000s and has 
merged as a hot topic in NWP nowadays (Buizza et. al., 1999a; Mullen and Buizza, 2001; Hansen, 
2002; Grimit and Mass, 2002; Bright and Mullen, 2002a and 2002b; Hamill et. al., 2000 and 2004a; 
Legg and Mylne, 2004; Wandishin et. al., 2005; Eckel and Mass, 2005; Jones et. al., 2007; Yuan et. al., 
2005 and 2007c; Jankov et. al., 2007). It’s expected that the ensemble-based probabilistic forecasting 
will play more and more important role in shaping the future of numerical weather prediction practice 
and service in years to come. 

For technical details, related references are provided at the last part (Part 11), so that interested 
researchers could study further in depth and join the active research community of this challenging 
frontier. First, the underline scientific reason why ensemble forecasting is needed was discussed in Part 
1. The following parts discussed various aspects related to ensemble forecasting including what 
ensemble forecasting is aiming for (Part 2), how to build an ensemble prediction system (EPS, Part 3.1, 
3.2, and 3.3), what products can be derived from an ensemble (Part 4), what is the role of EPS post-
processing (Part 5), how to evaluate the quality of an EPS and its forecasts (Part 6). Due to its 
increasing importance, how to communicate forecast uncertainty and how to use probability 
information in users’ decision-making process were illustrated in Part 7. Recent development of 
downstream applications using meteorological ensembles as inputs was also mentioned in Part 8. Part 
9 listed some major differences between the two forecast paradigms -- “single forecast” vs. “ensemble 
forecasts”. Part 10 mentioned possible future trend of ensemble-related development. Finally, a 
summary and references are given at Part 11. 
 
1.   Why is ensemble forecast needed? 

The ultimate goal of science is to predict future. A prediction process has four basic components: 
data collection (observation), assimilation of observed data into initial conditions to be used by a 
numerical forecasting model, model integration to project the initial state into future, and the 
application of the forecasts to real world situations. Intrinsic uncertainties are introduced at each of 
those steps during a forecast process, for example, instrumental and human error introduced during the 
process of collecting data; errors introduced during data assimilation process due to mathematical 
assumptions; imperfect model physics (approximation of real world such as parameterization of sub-
grid effects) and numeric (e.g., discontinuity or truncation); and differences in human (both forecasters 
and end-users)’s interpretation and decision to a same forecast depending on situations (who, what, 
when and where). All these kind of errors are intrinsic, unavoidable and sometimes even unknown to 
us in a real world operation. 

Due to its highly nonlinear nature, a numerical prediction model of weather, climate and water is 
chaotic i.e. a tiny difference in initial states could possibly be amplified into significantly large 
difference in future states in unstable condition (Lorenz, 1963, 1965, 1993; Thompson, 1957). The 
difference could be as large as that being randomly picked from model climatology. Therefore, such 
forecasts become meaningless, which indicates that prediction of weather, climate and water events 
has uncertainty and limit (predictability). Figures 1-2 depict two such examples of many from the U.S.  
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(A) 00z, Oct. 3 – 00z, Oct. 19, 2006                         (B) 06z, Oct. 3 – 06z, Oct. 19, 2006

Figure 1  Two consecutive NCEP Global Forecasting System (GFS) 16-
day 500-hpa HGT/VORT forecasts with 6-hour apart in initiation 
time. 

National Weather 
Service’s daily real-time 
operational model guidance. 
Figure 1 shows that two 
NCEP (National Centers for 
Environmental Prediction) 
operational GFS (Global 
Forecasting System) model’s 
medium-range (16 days) 
forecasts which were 
initialized at only 6-hour 
apart in time predicting two 
completely opposite large-
scale flow at 500 hpa level: 
one places a strong trough 
over the East Coast and 
another over the West Coast 
of U.S. (more than 3000 km 
apart)! Similar situation 
happens at short range too: two NCEP operational regional Eta model’s short-range (2.5 days) 
forecasts which had slight difference only in their initial atmospheric conditions predicted two distinct 
scenarios: one predicts a deep low pressure system (<976 hpa) while another a high pressure ridge 
(around 1008 hpa) over a same area (Fig. 2). Situations like these occur not uncommon in real-time 
operation especially during major high-impact weather events which are often associated with highly 
unstable atmospheric conditions. 

Therefore, uncertainty 
and predictability is a very 
real and important aspect of 
a forecast such as weather 
forecasting. Besides the 
prediction to an event itself, 
the uncertainty and 
predictability of the event 
also needs to be predicted, 
i.e. how small initial
differences (uncertainties) 
evolve with time in a model. 
Without uncertainty 
quantified, a forecast is 
incomplete. Ensemble 
forecasting is a dynamical and flow-dependent approach to quantify such forecast uncertainty (error of 
the day) and provides a basis to communicate forecast uncertainty and forecast confidence to end-users 
who can then be best prepared. If reader is interested in observing how small initial differences 
evolving under various weather situations in a real-time ensemble forecasting system, one could go to 
the NCEP Short-Range Ensemble Forecasting (SREF) system web page as an example: 
http://www.emc.ncep.noaa.gov/mmb/SREF/SREF.html. 

Figure 2  Two NCEP SREF Eta-member 63-h sea-level pressure 
forecasts initiated with slightly different initial conditions. 

NOAA’s National Weather Service 
Office of Science and Technology 
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2. What is ensemble forecasting aiming for?
In the current deterministic NWP practice, one wishes to use single model output (Xm) to

represent true atmospheric state (X), i.e.  

X=Xm (1)  

Since IC state and model state used in a model actually represent a kind of mean state in a certain 
degree, a corresponding model forecast (Xm) is, therefore, depicting a mean state too and the equation 
(1) is never the case in reality. Instead,

X=Xm+x0 (2) 

is always observed, where x0 is a departure of model forecast from truth. Since exact value of x0 is 
something we really don’t know in prior, we hope to estimate a possible set of solutions Xm+X’ to 
include the truth X or an error distribution X’ to have x0 be within the estimated distribution via a 
certain approach, i.e.  

X Є Xm+X’ (3)  

Since the intrinsic unavoidable uncertainties introduced at each of forecast steps are probably random 
in nature, the error distribution X’ must not be a single value but a kind of probabilistic distribution 
associated with initial uncertainties, instability of flow and the degree of nonlinearity of a modeling 
system. To reliably estimate and accurately describe this flow-dependent error distribution or forecast 
uncertainty range X’ to have truth be encompassed within Xm+X’ is the primary Mission of Ensemble 
Forecasting. Here, to improve the capability of predicting the error distribution X’ needs to improve 
ensembling technique and strategy, while to improve the accuracy of predicting mean state Xm mainly 
depends on model and IC qualities. In other words, the ensemble technique is dealing with the random 
error of a forecast, while the model and IC are dealing with the systematic error of a forecast. A good 
model and a high quality IC are the basis of ensemble forecasting. Therefore, improving model, IC 
quality and ensembling technique should be viewed as a whole to advance NWP. By the definition of 
ensemble mission, one can imagine that ensemble forecasting is most valuable when large forecast 
uncertainty is around and forecasters don’t know what solution to choose from in mainly high-impact 
events and has minimal value when weather is quiescent and highly predictable (although one still 
needs ensemble to identify such occasions). 

It might be worth pointing out that although ensembling method is gaining popularity in research 
and operation nowadays, a commonly seen incomplete use or even misunderstanding of the technique 
is that ensemble is merely used as a tool to improve the accuracy of a single value forecast such as by 
ensemble averaging all members or constructing a performance-based consensus forecast while the 
ensemble spread or forecast variance are purposely or mistakenly regarded as meaningless noises to be 
filtered out. We often heard people are saying that “forecast error can be reduced such and such by 
using ensemble data”. Indeed, due to the nonlinear filtering process, an ensemble mean forecast is 
statistically or on average more robust and accurate than a single forecast and then an improved 
forecast, but ensembling technique is not only a tool to improve a single deterministic forecast but 
more importantly to quantify forecast uncertainty which is the ultimate goal and the core mission of 
ensemble forecasting as discussed above. Ensemble averaging or other approaches to construct a 
consensus forecast are only one of the three possible ensemble-based product types: consensus or a 
most probable solution (mean is the simplest one), spread or forecast variance/confidence, and 
probability or a distribution (see Part 4).  
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After this forecast uncertainty issue was realized, the earlier attempt was using statistical 
approaches such as MOS (Model Output Statistics, Glahn and Lowry, 1972) to address the issue. For 
example, based on model performance over a long-time period in the past, statistical characteristic of 
forecast error is obtained for a particular model and the error distribution can then be applied to the 
model forecast to estimate a probabilistic forecast such as Probability of Precipitation (PoP) (the “Eq. 
3” thinking by estimating X’); or, some linear regression equations can statistically be established by 
either using model outputs (MOS) or observations (Perfect Prog, PP) as predictors to have a best 
estimate of a variable one wishes to forecast (the “Eq. 2” approach by estimating x0). Apparently, 
MOS-, POP- and PP-like approach is an important positive development in NWP history to address or 
reduce forecast uncertainty. However, an intrinsic limitation of any statistical approach is that the 
estimated error characteristic or distribution represents only the historical performance of a model in 
general such as model systematic bias but not the error related to the current flow situation (so called 
“error of the day”). Statistical method also heavily depends on the length of historical data and suffers 
when model frequently changes (a situation happens all the time in reality). In contrast, ensemble 
forecasting is a dynamical approach to capture the flow-dependent error of the day since it’s derived 
directly from the current model forecasts of the same day but not from past forecasts and also 
automatically improves as soon as a base model is improved. Surely, it will be desirable to combine 
both statistical and dynamical approaches together to portray a best picture of future true state (see Part 
5).  

 

3.  How to build an ensemble prediction system (EPS)? 
How to estimate the uncertainty distribution X’ of Eq. (2) in ensemble forecasting? The principle 

is to describe all possible uncertainty sources in a modeling system as accurately and completely as 
possible and then to incorporate all those uncertainties (perturbation terms) into the numerical model to 
be integrated in time to produce a finite size ensemble of forecasts. As an approximation to a 
theoretically infinite ensemble, the finite size ensemble is then used as the basis to estimate 
probabilistic distribution and uncertainty or confidence of a forecast. Below is a brief summary of 
currently existing approaches. Based on the approaches used, EPS could be classified into three 
general categories: 1-Dimensional, 2-Dimensional and 3-Dimensional systems. 
 
3.1  1-Dimentional EPS 

Only IC uncertainty is considered in 1-D EPS by perturbing initial conditions. Three basic 
properties need to be followed in designing a perturbation: Realism, Divergence and Orthogonality. 
Realism is that the magnitude of perturbation needs to be within the size of realistic analysis error and 
should exhibit a realistic spectral distribution over spatial scales such as larger uncertainty in smaller-
scale waves (difficult to observe) and smaller uncertainty in larger-scale waves (easier to observe). 
Divergence is that the perturbation needs to have dynamically growing structure leading members to 
diverge as much as possible during model integration to cover all possible solutions in a model space. 
Orthogonality is that the perturbation needs to be orthogonal to each other among members to 
maximize information content contained in an ensemble, which is especially important for a small size 
ensemble. Initial conditions or states needed to be perturbed include interior, lower-, upper- and 
lateral-boundary (if limited-area model) conditions. There are currently five or so different categories 
proposed for perturbing ICs especially for interior states. 

(1) Random Perturbation (Monte Carlo approach): Perturbation is randomly generated based on 
some kind of statistics (usually a normal distribution) representing typical uncertainty in analysis (such 
as the average difference between two analyses over a long period of time) (Errico and Baumhefner, 



December 2007                               Jun Du:  Uncertainty and Ensemble Forecast     7
 

 
Science & Technology Infusion 

Lecture Series 

1987; Mullen and Baumhefner, 1994; Du et. al., 1997). Although this type of perturbation represents 
well the average magnitude of analysis uncertainty (Realism), it is lack of dynamically growing spatial 
structure and not reflecting “error of the day”. As a result, the perturbation growth rate is low and, 
therefore, the Divergence in solution among members is usually not ideal. Random Perturbation is 
usually applied in places where one is unsure which other methods work better.  

(2) Time-Lagged approach: There are “Direct Time-Lagged” and “Scaled Time-Lagged” two 
kinds. Direct Time-Lagged approach (Hoffman and Kalnay, 1983) directly pulls multiple forecasts 
which are initiated from different past times but verified at a same time together as an ensemble (a 
mixture of old and young forecasts). This method views the error of a past forecast at t=0 (current 
initial time) directly as IC perturbation which should reflect “error of the day” and has dynamically 
growing structure leading to larger ensemble spread than random perturbation. The advantage of the 
method is that the generation of perturbation is absolutely free and there is no need to purposely 
generate IC perturbation fields for the ensemble, which implies that all operational NWP centers have 
this type of ensemble automatically. However, a main concern is that the quality (magnitude) of 
perturbation depends on the age of a forecast since forecast quality usually decreases with lead time. 
To avoid this weakness, past forecast errors are first scaled down by their “ages” (assuming error 
growth is quasi-linear) at t=0 to have similar magnitude in all perturbations and then added to or 
subtracted from the current control analysis to create multiple analyses to initiate an ensemble of 
forecasts (Ebisusaki and Kalnay, 1983; Kalnay, 2003). This modified version is called Scaled Time-
Lagged method and can be simply described by the following equation: 

      Initial perturbation = scaling x (time-lagged forecast – current analysis)     (4)  

The latter is not only able to control perturbation size but also doubles the ensemble membership 
by using both addition and subtraction procedures with very little extra computing cost (which is very 
important in real-time production) in generating perturbation. Note that this Scaled Time-Lagged 
method is actually already the same in idea and similar in technical procedure to the Breeding method 
(see the next paragraph). The Time-Lagged approach has been used in many ensemble research and 
operation such as NCEP operational seasonal ensemble forecast system (Saha et. al., 2006; Hou et. al., 
2001; Lu et. al., 2006; Brankovic et. al., 2006; Mittermaier, 2007). A limitation of the Time-Lagged 
method is that it cannot create an ensemble with large enough membership size since the number of 
“good” old forecasts available is limited in reality. Otherwise, the ensemble quality will be severely 
contaminated if too old forecasts are included to have a large size ensemble. By the way, Time-Lagged 
forecasts are often used as “initial seeds” to cold start an ensemble which uses other perturbation 
methods such as Breeding.  

 (3) Breeding: Different from Scaled Time-Lagged method, Breeding uses two concurrent 
forecasts (at a recent past time t=-T) rather than a time-lagged forecast and a current analysis to 
calculate raw perturbation at t=0. The difference is then be scaled down and added to or subtracted 
from the current control IC (Toth and Kalnay, 1993 and 1997). In this way, one can create as many 
members as he wants to have a large size ensemble as long as he can create enough initial random 
seeds or use other approaches (such as borrowing from other existing forecasts like time-lagged ones) 
in the beginning to initiate or have enough different forecasts to start with (cold start). So, Breeding 
method can overcome the membership limitation of Scaled Time-Lagged method. Since all the past 
forecasts used are now concurrent, the scaling factor has no need to be forecast-age based but can be 
anything related to analysis uncertainty to control perturbation magnitude and/or spatial structure. The 
perturbation can now be simply described by the equation (5). 

      Initial perturbation = scaling x (forecast 1 – forecast 2)                                (5)  
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Comparing Eqs. (4) and (5), one can also see that the perturbation in Breeding (bred vector) is no 
longer pure forecast error but the difference between two past forecasts which is a nonlinear extension 
of Lyapunov vector (Kalnay, 2003). Experience (e.g., NCEP SREF) shows that bred vector becomes 
mature in structure and leads to large ensemble spread growth after cycling for about two to three days 
after the cold start. Toth and Kalnay pointed out that the spatial structure of a mature bred vector is not 
sensitive to scaling period (T) and norm selected and that bred vector reflects analysis error (error of 
the day) introduced during data assimilation cycle well (Realism). Although the difference between 
two past forecasts should, theoretically, reflect the error growing structure of the immediate past cycle 
but not of the forecast period in future (i.e., a looking-backward approach), experiments show that bred 
vector’s growth rate (Divergence) is quite satisfactory in practice and higher than that by using either 
Monte Carlo or Scaled Time-Lagged methods (Toth and Kalnay, 1993 and 1997). Since this method is 
simple with no mathematical simplification or assumption (but using full nonlinear primitive-equation 
based model) and easy to implement, has little cost in computing power and gives good ensemble 
spread, it’s widely used and tested by many such as NCEP ensemble systems (Du and Tracton, 2001; 
Tracton and Kalnay, 1993) and CMA (China Meteorological Administration). However, it’s reported 
that bred vectors among ensemble members are not orthogonal enough but highly correlated to each 
other, resulting less optimal in information content contained in an ensemble (Wang and Bishop, 2003; 
Martin et. al., 2007). As a result of this, the ensemble spread growth (mainly in magnitude but not 
structure) is closely related to initial amplitude of bred vector. To orthogonize bred vectors, Ensemble 
Transform (ET) technique is used to make bred vectors more orthogonal to each other by applying a 
simplex transformation matrix to transform forecast-based perturbations to analysis perturbations (Wei 
et. al., 2007). Experiment shows that ET technique can improve ensemble performance over classical 
Breeding method. Therefore, ET has been implemented in the NCEP global ensemble system to 
enhance the Breeding method (Wei et. al., 2007). Another approach proposed to improve classical 
Breeding method is called Geometric Breeding which controls spatial correlation of bred vectors 
among members to make them less correlated to each other (Martin et. al., 2007). Geometric Breeding 
shows better spread-skill relation than classic Breeding. Since bred vector mainly depicts synoptic 
scale baroclinic instability but not smaller-scale convective instability (Toth and Kalnay 1993), it is, 
however, desired to have smaller-scale instabilities included in perturbation for a mesoscale EPS 
focusing on predicting, say, convective system related heavy precipitation events. Chen et. al. (2003) 
suggested that differencing two forecasts from a same model but with different versions of a 
convective scheme (instead of one same version as in classical Breeding) will help to depict convective 
instability in perturbation and, therefore, enhances ensemble performance in predicting heavy 
precipitation. On other hand, due to the characteristic that fast, small scale modes quickly saturated, 
and only slow, large scale modes left during breeding cycle, bred vector is a good candidate to be used 
in ocean-atmosphere coupled ensemble prediction system which is mainly associated with slow modes 
(Cai et. al., 2002, Yang et. al. 2006).  Recently, Prof. Eugenia Kalnay (2007) reported that bred vector 
has capability of predicting weather regime transition. 

 (4) Singular Vector (SV): This method first needs to develop a linear version of a nonlinear 
model (called Tangent Linear Model, TLM) as well as an Adjoint (Errico, 1997) of the TLM. Then 
over a desired optimal future time period such as 0-48h, TLM is integrated forward in time and then 
the Adjoint integrated backward in time to find initial sensitive areas to the forecast, say, at t=48h. This 
“forward and backward” cycling process needs to be iterated many times to obtain leading singular 
vectors. Then, a linear combination including rescaling and orthogonal rotating is applied to the 
vectors to construct a desired number of perturbations. With addition and subtraction of the 
perturbations to and from a control analysis, an ensemble of forecasts can be formed. Unlike the bred 
vector, the structure of SV is sensitive to the norm used and the cycling period selected (Errico and 
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Vukiceric, 1992; Palmer et. al., 1998). ECMWF chooses total energy as norm and 0-48 h cycling 
window to calculate SVs in their global ensemble system (Buizza, 1994; Palmer et. al., 1998). 
Obviously, SV is a looking-forward approach rather than looking-backward in time like Breeding does 
and mathematically optimizes large perturbation growth and orthogonarity to have large ensemble 
spread and contain more information at a pre-selected targeted forecast time. SV method is widely 
used and tested in both research and operation such as ECMWF and Canadian Meteorological 
Service’s regional ensemble (Li et. al., 2007). A disadvantage of the method is that it is costly in 
computing because the number of the iteration of this “forward and backward” integration required is 
usually about 3 times the number of SVs you want to create (e.g., it needs to integrate about 
3x50x2=300 times of 48h-forecast to obtain 50 SVs optimizing at 48h lead time. Therefore, SVs have 
to be calculated in a much reduced model resolution (comparing to actual forecast model resolution) to 
save computing time in operation. Another disadvantage is that a finite forecast lead time has to be pre-
defined at which SVs are targeted to be optimal in growth. So that SV-based ensemble might not be 
optimal in performance crossing multiple time ranges such as short and median range at the same time. 
The linear assumption that perturbation is small enough so that its evolution can be governed by the 
linear versions (TLM and Adjoint) of a nonlinear model is also a concern in calculating traditional SVs 
although it retains nonlinear property in some degree by calculating and combining multiple SVs. To 
overcome the linear assumption, some efforts have been made such as modifying the iteration 
procedure (Oortwin and Barkmeijer, 1995; Barkmeijer, 1996) and introducing the nonlinear singular 
vector concept (Mu, 2000) and the conditional nonlinear optimal perturbation (CNOP) method (Mu et. 
al., 2003; Mu and Duan, 2003; Mu and Zhang, 2006). With simple models, CNOP method showed 
improved capability of depicting nonlinear features in perturbation comparing to SV method although 
further studies are needed with full NMP models. Adding moist physics in TLM and Adjoint 
(Ehrendorfer et. al., 1999) is another step to be closer to reality and showed improved performance. 
Since SV is mathematically looking forward and focusing on perturbation growing structure at a future 
time but not related to any immediate past, a reasonable question to ask is that does SV-based 
perturbation actually reflect error of the day which is introduced by the most recent data assimilation 
cycle? The following efforts are addressing this kind of concern and yield improved results 
(Barkmeijer et. al., 1998; Fischer et. al., 1998): e.g, evolving-SV approach by adding the final or 
evolved singular vector from an immediate previous cycle, say, 48h-period prior to the current model 
initiation time (analysis time) to the current cycle’s SV perturbation; using analysis error covariance in 
replacing total energy as norm to calculate SVs; and the application of Kalman filter and so on. It’s 
interesting to notice that the resulting SV perturbation is closer to Lyapunov vector or Bred vector by 
either switching to evolving-SV or using analysis error covariance as norm (Kalnay, 2003; Reynolds 
and Errico, 1999). 

(5) Coupling with Data Assimilation: The simplest version of this method is directly using 
multiple analyses available to initiate an ensemble of forecasts (Tracton et. al., 1998; Grimit and Mass, 
2002). However, the number of available analyses is quite limited, which will restrict ensemble size. 
By perturbing observations, Houtekamer et. al. (1996) and Houtekamer and Mitchell (1998) purposely 
generated multiple analyses to initiate their global ensemble system, which shed lights to a new IC 
perturbation generating approach for ensemble so called Ensemble Transform Kalman Filter (ETKF) 
approach (Anderson, 1996). The ETKF approach was further explored in detail by Wang and Bishop 
(2003), Wang et. al. (2004) and Wei et. al. (2006) for generating ensemble. In their studies, ETKF 
transforms forecast perturbations into analysis perturbations by multiplying a transformation matrix. 
Using observational information, the magnitude of the analysis perturbations was adjusted before the 
perturbations are added to a control analysis to initiate an ensemble of forecasts. The transformation 
matrix used can also guarantee all perturbations to be orthogonal to each other, a desired property for 
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ensemble forecasting. Although ETKF was not used in the data assimilation procedure to directly 
output multiple analyses in their studies, ETKF itself is an ensemble-based data assimilation technique 
(Tippett et. al., 2003; Anderson, 2001; Whitaker and Hamill, 2002; Ott et. al., 2004; Szunyogh et. al., 
2004; Hamill, 2006; Zhang et. al., 2004; Wang et. al., 2007). Therefore, ETKF technique has a 
potential to directly link ensemble prediction and data assimilation (DA) into one unified procedure in 
an NWP system: ensemble forecast variance provides background error covariance information for DA, 
while DA provides an ensemble of analyses to initiate an ensemble of forecasts. In such a coupled 
system, not only EPS can be improved by having more realistic IC perturbations reflecting true error of 
the day in the analysis, but also the quality of analysis improved by using flow-dependent background 
error information (Hamill, 2006; Zhang, 2005). Therefore, it’s believed that ETKF method has a great 
potential. This method has been explored to be applied to operation such as regional ensemble systems 
at UK Met-Office (Mylne, personal communication) and U.S. Navy and Air Force (McLay et. al., 
2007).  Active research is, however, still going on in this area. For example, it might need a large 
ensemble size to provide adequate error covariance information for DA, which is very costly in 
production. A dual-resolution idea has, therefore, been proposed to run such an ETKF-based system to 
significantly reduce computing cost (Gao and Xue, 2007; Gao et. al., 2007). 

It is worth pointing out that all the currently existing IC perturbation generating methods do not 
work well and yield very little ensemble spread in tropics. This is because the current methods are 
mainly dealing with slower and larger-scale baroclinic instability which dominates middle- and high-
latitude atmospheric motion but not faster and smaller-scale barotropic and convective instabilities 
which dominate tropical atmospheric motion. Therefore, special consideration needs to be researched 
for tropics. A simple comparison among various methods can be found in Bowler (2006).  

Besides interior initial states, the content of initial condition should also include lower-, upper- 
and lateral-boundary forcing. The lower boundary forcing is introduced by land and water surface 
initial parameters such as sea surface temperature, heat and moisture flux, ice and snow cover, soil 
properties including moisture, temperature and type, surface albedo, roughness and greenness etc.. Out 
of those, sensitivity of initial soil moisture uncertainty to ensemble prediction in short-range (0-3 days) 
has been paid particular attention so far. It is found that soil moisture uncertainty plays an important 
role in convective precipitation during warm season but less important in large-scale precipitation 
during cool season (Sutton et. al., 2006; Aligo et. al., 2007; Du et. al., 2007a). The sensitivity of some 
surface variables such as 2-meter temperature to initial soil moisture remains high in both warm and 
cool seasons although such a sensitivity demonstrates strong diurnal variation related to radiation 
(much stronger during daytime than nighttime) and geographically preferred regions in particular 
forecasts (Du et. al., 2007a). Du et. al., 2007a) also reported that the effectiveness of soil moisture 
perturbation to ensemble forecast depends on perturbation’s spatial structure and magnitude: spatially 
uniform and larger magnitude perturbations produce larger ensemble spread than spatially random and 
smaller magnitude ones do. In general, comparing with the sensitivity to atmospheric initial condition 
uncertainty, the sensitivity to land-surface initial parameter uncertainty seems to be secondary for 
short-range forecasts, which, of course, could be just opposite for longer-range seasonal forecasts 
which could be more sensitive to lower-boundary forcing uncertainty. Therefore, it’s recommended 
that perturbation in surface forcing needs to be combined with other perturbations (such as IC and 
physics) in order to build a robust ensemble system. As for upper boundary forcing from space such as 
solar activity or how the upper boundary being treated in a model, not much attention is yet paid to 
how sensitive a weather forecast will be or how much ensemble spread could be attributed to due to the 
uncertainty in its initial description. It needs to be studied quantitatively. For a regional ensemble 
system, lateral boundary condition (LBC) could play a dominant role in defining ensemble spread of 
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many variables (except for precipitation) if model domain is small (Du and Tracton, 1999; Warner et. 
al., 1997). Therefore, it is recommended that (a) a large enough model domain should be used in 
limited-area model (LAM) based ensemble system to avoid negative impact from LBCs; and (b) LBCs 
need to be perturbed too to ensure diverse ensemble solutions. Currently, a common approach in 
practice is to use different ensemble members from an available global ensemble system as LBCs for 
different members in a LAM-EPS such as NCEP SREF (Du et. al., 2004). Nutter et. al. (2004a and 
2004b) suggested an approach to compensate spread loss due to LBC. How does the inconsistency or 
consistency in structure between LBC and internal IC perturbation affect ensemble performance is an 
issue yet needs to be investigated. It’s reported that Spanish Weather Service (INM) has built a LAM-
EPS purely based on diversity in LBCs (Garcia-Moya, 2006, personal communication). 
 
3.2  2-Dimentional EPS 

Besides IC uncertainty being considered, the uncertainty in model physics and dynamics is also 
taken into account in a 2-D EPS. There are currently many approaches used on this regard such as 
multi-model, multi-physics, multi-dynamics, multi-ensemble system and stochastic physics. Based on 
favorable research results such as Mullen et. al. (1999) and Tracton et. al. (1998), NCEP pioneeringly 
implemented a “multi-ensemble system” approach-based SREF in operation consisting of two sub-
ensemble systems where each of them was based on a different regional model from the very 
beginning of its development (Du and Tracton, 2001). Currently, NCEP SREF consists of four sub-
ensemble systems with four regional models (Du et. al., 2006). Obviously, multi-ensemble system 
approach is a grand mixture of multi-model, multi-dynamics, multi-physics, multi-IC and multi-LBC 
etc. methods. Multi-model ensemble system is considered to be an ad hoc approach but has been 
proven to be very effective and work very well (in both reducing the error of ensemble mean forecast 
and increasing ensemble spread) in practice (Du et. al., 2003; Mylne et. al., 2002). The simplest 
version of multi-model ensemble is the so-called Poor-Man ensemble where multiple single forecasts 
from various available models are just pulled together to form an ensemble if one cannot afford to run 
his own “normal-cost” ensemble (Wobus and Kalnay, 1995; Ebert, 2001). Multi-model approach has 
been widely accepted and used nowadays. A recent development of multi-model approach is a mixture 
of multi-ensemble systems from multi-centers such as TIGGE (THORPEX Interactive Grand Global 
Ensemble) and NAEFS (North American Ensemble Forecasting System) etc. international efforts, 
which should be now called Rich-Man ensemble (in addition to his own “normal-cost” ensemble). 
Obviously, a disadvantage of multi-model approach is the cost to develop and maintain many models if 
it is run by one institute. In addition, multi-model approach can also be utilized in deterministic scope 
rather than ensemble scope such as the Florida State University’s “superensemble” approach 
(Krishnamurti, 1999) which is a multi-model based MOS-type approach using linear regression 
technique. It significantly improves forecast accuracy over the original forecasts by correcting model 
biases. However, this method provides only a most likely deterministic solution with no forecast 
variance or uncertainty information attached. 

Within one model, an ensemble can be formed by alternating physics schemes from one member 
to another. This multi-physics approach is found to be effective in predicting convective systems with 
weak large-scale forcing (Stensrud et. al., 2000; Jankov et. al., 2005). Using multiple convective 
schemes, Du et. al. (2004) compared the relative roles of multi-physics vs. multi-IC in contributing to 
ensemble spread in short range (1-3 days). Their result showed that IC uncertainty is a dominant 
contributor to ensemble spread of large-scale basic fields such as wind, pressure, height and 
temperature, while physics difference provides extra valuable spread mainly being confined to isolated, 
smaller-scale storm areas. However, for precipitation and convective instabilities such as CAPE, both 
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IC and physics diversities are found equally important. Similar result is also seen for fine-resolution 
(4km) storm-scale ensemble (Kong et. al., 2007). Therefore, it’s recommended that both IC and 
physics diversity should be taken into account at the same time in a mesoscale ensemble to maximize 
forecast diversity. With the NCEP SREF, it is found that the interaction between IC perturbation and 
physics diversity indeed greatly enhances ensemble spread during warm seasons when combing IC and 
physics perturbations together although the impact from physics diversity seems minimal in cold 
seasons. It is expected that multi-physics might be an effective way to build an ensemble system for 
convection-dominate tropics. A problem noticed of multi-physics approach by simply alternating 
different physics schemes is that the extra growth rate in ensemble spread gained initially will soon die 
out with time and cannot sustain over the entire forecasting length.  

A more theoretically sounding and sophisticated version of multi-physics approach is Stochastic 
Physics. Since part of forecast uncertainty stems from parameterization of sub-grid physical processes 
(Stensrud, 2007) and truncation etc. imperfections of a model, certain parameter values or relevant 
terms such as tendency, diffusion and energy can be altered (e.g. via multiplying) by, in a stochastic 
fashion, a factor to account for those possibly missing effects. Therefore, by applying such stochastic 
process during model integration, forecast value will be altered accordingly. By repeating this 
stochastic process many times, an ensemble of forecasts can thus be formed. This stochastic process 
could either be confined within each member without interaction with other members during the entire 
model integration (“individualism”) or be carried out across different members by interactively 
exchanging information among them during the model integration (“collectivism”). Although this is a 
promising method both scientifically and economically, a couple of key issues need to be demonstrated 
before it’s fully convinced to replace the current multi-model approach such as (a) can this method 
steadily outperform the multi-model based ensemble (in terms of mean error, spread-skill relation and 
probability reliability etc.), and (b) can the extra spread growth rate injected by stochastic physics be 
sustained during the entire model integration. Some research was done on this in the past (Hotekamer 
et. al., 1996; Buizza et. al., 1999b; Bright and Mullen, 2002b; Gray and Shutts, 2002; Shutts, 2004) and 
more is needed to make it a mature method. ECMWF has implemented a version of this method in 
their global ensemble system (Buizza et. al., 1999b; Shutts, 2004), while NCEP has a plan to do the 
same for both its global and regional ensemble systems in near future (Hou and Toth, 2007, personal 
communication). 

It is still not clear and an issue to be investigated that how important multi-dynamics is relative to 
multi-physics in contributing to ensemble spread. Some expect that physics might be more important 
than dynamics to forecast diversity. This is a very practical issue at NWP centers such as should one 
model core or multiple model cores be maintained in an ensemble system. It’s always easier and 
cheaper to maintain only one model dynamic core but with varying physics for ensembling. 
 
3.3  3-Dimentional EPS 

History or past memory always sheds lights to our future path if it’s interpreted and applied 
properly and is, therefore, an important aspect of weather forecasting (Cao, 2002). In a 3D-EPS, past-
memory or history dimension is also considered besides varying IC and model. Direct Time-Lagged 
ensemble is a typical approach to bring this history dimension in. The degree of consistency from run 
to run in immediate past should be a measure of forecast uncertainty: high (less) consistency indicates 
high (low) predictability of an event. This agrees with forecaster’s experience: a forecaster is usually 
more (less) confident when he sees high-consistency (jumpiness) between runs from cycle to cycle. A 
main concern of using the past-time dimension is that forecast quality degrades with the age of a 
forecast: older forecasts perform worse than newer forecasts. However, as model and IC quality 
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improves, this might not be true any more if the past time covered is not too old but only immediate 
cycles. For example, it’s not uncommon to observe that a 48hr model prediction could be more 
accurate than a 24hr prediction. As frequency of running a model at NWP centers increases (e.g., four 
times per day is a normal practice for many models at NCEP and even more frequently for special 
models such as NOAA RUC - Rapid Update Cycle - model which is run every hour), the information 
contained in those immediate past cycles could be huge and needs to be utilized more cost-effectively. 
An advantage of this dimension is no sacrifice in model resolution. All members are integrated with 
the highest possible full resolution as the single high-resolution run with no extra computing cost. 
However, not much research was done to seriously evaluate how to combine a 2-D ensemble with 
Direct Time-Lagged ensemble into a new 3-D ensemble to improve overall ensemble performance and 
provide more useful information to users. The situation might improve when more people realize the 
importance of this past-time dimension in ensembling. 

In real world operation, no single EPS (or single type of ensemble product) is universal and 
satisfies all needs but multiple scale ensemble systems are needed to serve a variety of forecasting 
purposes. Those multiple systems should work interactively and seamlessly with each other in some 
kind of adaptive ways (Subsection 2.7). Each system has its own uniqueness in construction and 
addresses its own unique problems. For example, a climate EPS focuses on the trend of climate change 
such as due to greenhouse gas-induced global warming or natural variability issues; a seasonal EPS on 
month to year scale of dominant weather mode such as warm or cold, wet or dry etc.; a global EPS on 
median-range 3-14 day’s large-scale flow pattern and serves early warming purpose; a regional EPS on 
short-range 1-3 day’s detail weather events with more focusing on surface weather elements; a 
relocatable storm-scale local EPS on 6-24hr details of a particular individual high-impact storm over a 
specific region of interest such as severe convective storm outbreak, fire weather, hurricane and 
disastrous event (natural or human-caused); and micro-scale ensemble such as ensemble cloud, 
turbulence and PBL (planet boundary layer) schemes. Different scale EPS obviously needs different 
strategies in perturbing ICs and model. For example, both environment and vortex (structure and 
intensity) need to be perturbed for hurricane prediction (Zhang and Krishnamurti, 1999; Cheung and 
Chan, 1999a and 1999b); how and what to perturb in ICs (warm bubbles?), might physics play more 
important role than IC, and how to assimilate special observations like Doppler Radar data into ICs etc. 
are all issues need to be studied in a convective storm-scale ensemble; fire weather, dispersion 
ensemble might focus more on near-surface elements and PBL winds and structures; and longer-range 
forecasts need to consider ocean-atmosphere coupled EPS which lower boundary forcing such as SST 
etc. should be important; …, just to mention a few.  

A frequently asked question is that how many members are needed in an EPS. Based on Du et. al. 
(1997) study, 7-10 members are normally enough to obtain most of the benefit from an ensemble, a 
result confirmed by other studies such as Talagrand (personal communication). However, the answer 
really depends on what your aim is. For example, membership required might be less for 500hpa 
height and more for convective precipitation; less for a coarse model resolution system and more for a 
high model resolution system (by the way, an optimal tradeoff between resolution and membership 
should be determined by cost-benefit ratio); less for ensemble mean forecast and more for probability 
distribution; and less for prediction purpose and more for data assimilation purpose and so on. It is also 
possible that the answer might be quite different from a practical or a theoretical point of view: a finite 
size ensemble might work sufficiently well in practice but a huge or even infinite size might be 
required in theory. Since a large amount of computing and other resources is involved in ensemble 
forecasting related tasks, it always needs a balance between efficiency and elegance (Mullen and 
Buizza, 2002). 
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4.  What products can be derived from an ensemble forecast? 
In general, three types of product can be derived from an ensemble: a most probable single 

solution or consensus forecast, uncertainty measure and a distribution of all possible solutions. 
Depending on circumstances, most probable single solution could be represented by simple ensemble 
mean, median or mode of members. Besides, some efforts are also made on constructing such a 
consensus forecast through more sophisticated methods such as linear regression, ensemble MOS 
(Gneiting et. al., 2005), performance-based weighting (Woodcock and Engel, 2005), clustering 
(Greybush et. al., 2007) and Bayesian Model Averaging (BMA) (Raftery et. al., 2005). Note that the 
“most probable or best solution” is not measured by a particular single realization but by average over 
a large number of realizations from a statistically reliable EPS (see Part 6). Advantages of the most 
probable single forecast are information highly compacted with only one single value, easy to 
understand and use, less confusing, simple and acceptable to most general users and public besides 
being more accurate statistically. Disadvantages of ensemble averaging are smoothing out spatial 
details, overestimating light precipitation area coverage and underestimating heavy precipitation area 
coverage (Du et. al., 1997), and even misleading in bi-modal or multi-modal situations besides 
providing no uncertainty information. For example, ensemble mean wind speed is very misleading 
when large uncertainty exists in wind direction among ensemble members. Therefore, we suggest that 
ensemble spread should also be used to help us to correctly interpret ensemble mean information: e.g., 
mean is probably more trustable when it’s associated with small spread and less trustable when 
associated with large spread. Under “large spread” situation, other products should also be looked at 
for further assessment.   

Forecast variance among ensemble members can be used to quantify forecast uncertainty. 
Standard deviation of members with respect to ensemble mean is usually defined as forecast variance 
known as ensemble spread. Large (small) spread indicates a low (high) confident forecast. To more 
insightfully interpret the significance of spread information in a forecast, ensemble spread is often 
normalized by or compared with climate anomaly (Hart and Grumm, 2001). Given that natural 
variability of a field is quite different over different geographical zones (e.g., large in mid- and high-
latitudes and small in tropics), it is sometimes useful too to normalize spread by an averaged spread 
over a past time period in space to reflect true predictability of atmospheric motion. Advantages of 
spread are information highly compacted, easy to understand and ability of distinguishing between 
phase and intensity or amplitude uncertainty of a weather system if combining with ensemble mean 
information. A main disadvantage is that spread information doesn’t tell how members are actual 
distributed such as normally distributed or skewed or multi-modal distribution. For some variables 
such as precipitation, forecast variance is somehow related to their ensemble mean values. Under such 
circumstances, spread doesn’t really reflect truth predictability of an event. By normalizing spread of 
such variables by their mean value might be helpful. In reality, since an ensemble system is not 
perfectly designed (see Part 3), spread doesn’t perfectly reflect true predictability or perfectly correlate 
with forecast skill. Therefore, a post-processing or calibration is necessary to derive various versions of 
predictability or confidence related measurement based on raw spread information combining with 
other information (e.g., IM et. al., 2006). 

As discussed in Section 2.2, a complete forecast should be a distribution rather than a single value. 
To retain full or maximum information in a forecast, many distributive-type of products can be made 
from an ensemble such as probability, postal stamp chart (individual members), clustering, spaghetti 
chart, plume diagram (time evolution of forecast values at a given location), extremes or envelope, and 
three-represented-value type (such as 10-50-90%). A probabilistic forecast can be in 2-D or 3-D spatial 
distribution at a given time for a given category or a 1-D distribution of probability over all categories 
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at a given location and time or a 1-D time evolution of a probabilistic value (probogram) at a given 
location. By the way, it needs to keep in mind that the “probability” derived from a finite ensemble 
(sampling issue) is, theoretically, not true probability but relative frequency. Main advantage of 
distributive and probabilistic product is full information contained and conveyed, which greatly 
reduces the chance of having “surprising storms/events” (both missing and false alarm) in forecasts by 
providing probabilistic heads-up or heads-down information of less-predictable but high-impact 
weather events in advance. This important piece of information might be captured by only a few 
members in the ensemble and, therefore, could be completely filtered out in other types of product 
such as ensemble mean. On the other hand, since distributive and probabilistic products are not 
deterministic but a range of possibilities, users are often hesitative to make a decision based on 
probability. How to use probabilistic information in decision-making will be briefly discussed in 
Section 2.7. As always, each type of products has its own strength and weakness. 2D-probability is 
displayed only for a given threshold, so that one needs to look at other thresholds at the same time to 
get a full picture. In conditional probably, one needs to quilt two or more pieces of information 
together, e.g., only knowing the probability of precipitation type being snow if precipitation occurs (a 
given condition) is not enough, he also needs to know what is the chance to have the precipitation 
based on full ensemble members in order to know the whole story. Displaying all individual members 
together, known as Postal Stamp chart, is found useful for forecasters to have a qualitative first glance 
to know how diverse among ensemble members, what kind of extremes could be and what to expect on 
average. Grouping of members into several regimes (Clustering and Tubing, e.g., Alhamed et. al., 
2002; Yussouf et. al., 2004; Marzban and Sandgathe, 2006; Atger, 1999a) will provide useful insight in 
many situations such as multi-modal and regime transition period. Although, mathematically, one can 
always cluster members into several categories, the separation among clustered groups is not always 
physically or meteorologically significant. To ensure the separation of clustered groups is 
meteorologically significant, clustering technique needs to be carefully designed and the significance 
of separation between groups needs to be statistically tested besides the necessity to have a sufficiently 
large ensemble size. Spaghetti chart (a group of contours of a selected value from each member being 
plotted together) is widely used. Since it gives full solutions of all members, one can clearly picture 
what the mean, mode, distribution and outlier are. Disadvantage is that it’s not always pre-known 
which contour value is proper to be picked for a particular event since there are only a few values 
(usually one or two) can be displayed in a spaghetti chart. Envelope display is good to see possible 
extremes at both low and high ends but lacks of detailed member distribution within. However, for a 
given location, the time evolution of both extreme values and member distribution can be displayed 
together as a plume diagram. In practice, to reduce data volume while still possibly to retain critical 
forecast information, a compromised version of full probabilistic distribution is the three-represented-
value type product. Two values represent extremes at low and high ends (e.g., either extreme values 
themselves or values associated with 90% and 10% probability or similar), while one value represents 
a most probable solution like median, mode or mean. All the above three types of products (most 
probable, uncertainty and distribution) can sometimes be combined into one single product such as Fig. 
3 (nicely showing uncertainties in both wind speed and direction) although it’s not always easy to do 
so. How to condense abundant ensemble information into a simple product which can be easily 
understood and used by forecasters and end-users is an issue needs to be further studied. Storm 
Prediction Center of NCEP developed a lot of multi-variable joint-probability type of products which 
is found a meaningful way in fire weather, convection and winter storm forecasting (Fig. 4, Bright et. 
al., 2004 and Weiss et. al., 2007).  

Usually, IC perturbations are centered around a control analysis, the control member tends to 
remain near the center of an ensemble cloud and close to ensemble mean in linear or quasi-linear 
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situation. Hence, ensemble mean 
often verifies more accurate than 
other perturbed members, which 
implies that control member 
could have different statistical 
property comparing to other 
perturbed members.  Therefore, 
a question is that control member 
should be included or excluded 
or be weighted more in 
calculating final ensemble 
products such as probability, 
spread and mean? Practically, 
this question only matters when 
ensemble size is small (say less 
than 50) since including or 
excluding control member should 
not make much difference for a 
large size ensemble. Also, in a 
highly nonlinear situation or 
longer range time integration, 
control member could be 
anywhere within the ensemble 
cloud. In that case, control 
member should perform similarly 
as other perturbed members and, 
therefore, be included in the 
calculation without being 
distinguished. Only in the 
situation where ensemble size is 
small and flow is relatively linear, 
this question becomes relevant. 
The answer to this question may 
vary depending mainly on two 
factors: whether an EPS is biased 
or unbiased and has sufficient 
spread or not. If an EPS is 
unbiased and has sufficient 
spread or over-dispersive, control 
member is often more accurate 
and plays more important role 
and, therefore, it should be 
included in calculating 
probability, be weighted more in 
calculating ensemble consensus 
forecast but may be excluded in 
calculating spread to maximize 
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Figure 3  60-h forecast for surface winds at Misawa air force base, 
Japan. The range of possible wind speed is given with a 90% 
confidence interval (shaded) and extreme maximum and 
minimum (dotted) together with ensemble mean value (thick 
broken line). Wind direction uncertainty and prevailing (mean) 
direction are also plotted at the bottom. [Courtesy of Maj. F. 
Anthony Eckel of Naval Postgraduate School] 

Figure 4  NCEP SREF based Joint or combined probability of Fire 
Weather Index developed and operationally used by NCEP Storm 
Prediction Center (SPC). This is a 27-h probabilistic forecast 
meeting all the following four conditions: 12h precipitation 
<=0.01 inch, surface relative humidity <=15%, surface wind 
>=20 miles per hour and surface temperature >=60 degree 
Ferenhite. [Courtesy of Drs. David Bright and Steve Weiss of 
SPC] 
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spread in an under-dispersive ensemble (since the inclusion of control run might reduce spread because 
the control forecast is probably closer to ensemble mean under linear or quasi-linear situations). 
Otherwise, if an EPS is either severely biased or under-dispersive, truth is often outside the ensemble 
cloud. In that case, control member (near the center of ensemble cloud) has less chance to be correct 
than some perturbed members and, therefore, might not be included in ensemble products to avoid a 
possibly degraded forecast. By the way, from the above discussion, one might see that the difference 
between ensemble mean and control member could be used as a measure of nonlinearity: the larger this 
difference, the higher nonlinear a flow exhibits. 
 

5.  What is the role of EPS post-processing? 
In reality, model used by ensemble has bias; the uncertainty source of a forecasting system cannot 

be fully and accurately described by an EPS as well as model spatial resolution has to be compromised 
due to huge computing cost, which results in a suboptimal ensemble system. The defects of such 
suboptimal ensemble system include the following: ensemble mean not being better than control and 
other perturbed individual members, suboptimal spread-skill relation (under- or over-dispersive 
spread), excessive outliers, unreliable probability and lacking of spatially detail structures etc. Even 
with perfect IC perturbations, ensemble-based PDF distribution could be woeful at so called 
“unpredictable spots” as long as model possesses even very small error (Du, 2005). Therefore, post-
processing is a necessary and important step to calibrate raw ensemble forecasts. For example, by 
removing model systematic bias (1st moment), ensemble mean forecast will be more likely to close to 
the best solution, outlier will be significantly reduced and probability will be more reliable. For multi-
model ensemble system, it also ensures no spurious spread introduced when bias of each model is 
removed before the sub-ensembles are combined into one grand-ensemble. Removing bias is also very 
important for ensemble-based data assimilation technique. By calibrating 2nd moment (forecast 
variance), spread-skill relation and the under- or over-dispersive problem of a spread could be 
improved and remedied. To further improve reliability of a probabilistic forecast, higher-moment such 
as PDF distribution also needs to be calibrated. In many applications such as hydrology and fire 
weather, downscaling of a lower-resolution ensemble is necessary to resolve local-scale features. Since 
ensemble is not perfect in real world, the equal-likelihood property of each member’s performance 
might be violated (see Part 6), i.e., members could perform differently in quality under different 
weather conditions especially in multi-model or multi-physics based systems. Under these 
circumstances, some kinds of performance-based weighting to different members might be found 
useful in practice before combining all members into an ensemble product, which is another kind of 
post-processing procedures. Removing bias is believed to be important too in searching for “best 
member”. We are always hoping to know in prior which member might verify the best although it’s 
almost impossible since all of them should be equal likely in theory (see Part 6). However, if we can 
completely remove systematic bias from an ensemble, ensemble median or mean (if distribution not 
too skewed) should verify the best on average. Thus, for an individual event, we might be able to 
identify which member is likely to be the best since the member that is closest to the median or mean 
should also verify close to the best. One might expect that different member could serve as “best 
member” at different forecast lead time or over different regions or with respect to different weather 
systems or parameters. In contrast, in a biased EPS, there is no easy reference to be used to identify the 
best member, where ensemble median or mean should consistently perform poorer than the best 
member. All those indicate the importance of ensemble post-processing. 
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There are, in general, two kinds of approaches in post-processing: statistical and dynamical. Since 
statistical approach is based on past error information, it should work well when bias is relatively 
constant from day to day and large in size but poorly when bias varies with flow and is small as well as 
weather regime changes. Statistical approach has many different versions including commonly used 
running-mean which is an equally-weighted average over a past period of time (e.g., Stensrud and 
Yussouf, 2003 and 2007; Yussouf and Stensrud, 2006), simple decaying-average which intends to 
focus more on the most recent past data with equivalently “decreasing weights” with data ages using a 
Kalman Filter type adaptive algorithm (Cui et. al., 2005), regime-dependent analog approach where 
weighting depends on flow pattern (Du and DiMego, 2008), linear regression (Krishinamurti et. al., 
1999 and 2000; Yuan et. al., 2007a), Artificial Neural Network (Yuan et. al., 2007a and 2007b) and 
Bayesian Model Average (BMA) etc.. Some of them are more sophisticated than others. The basic idea 
of BMA is that for each ensemble member, create a probabilistic distribution, then assign a weight to 
each distribution based on past performance of each member, and finally use weights to combine all 
distributions into one “master” probabilistic distribution. This BMA approach is gaining its 

popularity nowadays (Raftery et. al., 2005; Sloughter et. al., 2007; Wilson et. al., 2007). For short-
range forecasts (1-3 days), a short data-training period such as 14-30 days might be enough, while for 
longer-range forecasts (beyond a week), much longer training period might be needed. The length of 
training period depends on variables too such as shorter for temperature and longer for precipitation. 
For situations requiring long training period, some special datasets such as hindcast or reforecasting 
(Hamill et. al., 2004b and 2006) might be purposely generated for post-processing to use. It’s reported 
that using reforecasting data can effectively calibrate probabilistic forecasts to be more reliable 
(comparing Fig. 5 and 6; Hamill and Whitaker, 2007; Hagedorn et. al., 2007; Hamill et. al., 2007). 
Post-processing can be applied to 1st moment (mean), 2nd moment (variance) and higher-moment 
(such as PDF distribution, Eckel and Walters, 1998). For example, statistical dressing and shadowing 
are ways to increase spread for an under-dispersive ensemble (Roulston and Smith, 2003; Berrocal et. 
al., 2007; Gilmour and Smith, 1997). Statistical approaches can also be applied for downscaling where 
topography and other information might also be considered at the same time. A dense observation is 
surely critical in statistical downscaling and other post-processing.  

Figure 5  Reliability score of probabilistic forecast of 12-hourly accumulated precipitation >= 5 mm over 
Continental US at day 1, 3 and 5 leads averaged over 480 case days, based on raw ECMWF global 
ensemble (15 members). It shows over-confident in the probabilistic forecasts. [Courtesy of Dr. Thomas 
M. Hamill of Earth System Research Lab/NOAA] 
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Figure 6  Same as Fig. 5 but for post-calibrated ensemble with a 20-year weekly 15-member reforecasting 

ensemble data. It shows much more reliable probability comparing to the raw ensemble-based 
probability (Fig. 5). 

In many real world situations, bias varies with flow, and the systematic and random error 
components are hard to be separated (even such a separation is not physical if mathematically can be 
done), so that statistical methods don’t work well but flow-dependent dynamical approach is desired. 
There are no widely accepted dynamical methods yet but it remains a land of wildness to be explored 
in this direction. Based on author’s personal experiences, methods could include multi-model based, 
dual-resolution such as Hybrid Ensembling approach (Du, 2004), spread-error relation and stochastic 
physics etc.. Dual-resolution is also common for dynamical downscaling. However, for very high-
resolution dynamical downscaling, it might be too expensive to run a full-physics downscaling model. 
Then, an alternative might be to run the very high-resolution downscaling model with no or reduced 
physics which might be a reasonable assumption for short range. Stochastic physics has potential in 
reducing bias by simulating various bias effects in model equations. Since a favorable large-scale 
environmental condition is necessary for an event such as heavy precipitation to occur, careful 
diagnosis of related environmental dynamical conditions such as moisture convergence, vertical 
motions and instability might help to calibrate a forecast as a post-processing too (Gao, 2007). 
 
6.  How to evaluate the quality of an EPS and its forecasts? 

How and what to evaluate is important because it not only gives one a sense of correctness or 
wrongness but more importantly it could shape how an EPS or a model being developed in a long run. 
In general, four aspects need to be verified to measure the quality of an ensemble system: equal-
likelihood of each ensemble members, superiority of ensemble mean to single control forecast, high 
spread-skill relation and reliable probability. Those four aspects are related to each other in certain 
ways. Because all perturbed ICs are supposed to be equal-likely true and all perturbed physics or 
varying physics schemes or alternative models are also equally plausible, performance of all ensemble 
members should be, in principle, similar to each other on average. Otherwise, it indicates problems of 
ensembling technique employed, e.g., either IC perturbation size is too large or alternative models, 
physics schemes or perturbations added are not really equally plausible. Due to this equal-likelihood 
property, one can image that it’s difficult if not impossible to determine in prior which member is 
likely to perform the best in a particular forecast. 
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 Due to nonlinear filtering, 
discrepancies among members (i.e., less 
predictable elements) are damped or 
cancelled and only those common 
features among members (i.e., more 
predictable parts) are remained during 
the process of ensemble averaging. This 
will result in a superior ensemble mean 
forecast to a single or even higher-
resolution control forecast on average. 
Figure 7 is an example in hurricane track 
forecasting showing the ensemble mean 
is close to the observed track. In grid-
point verification, smoothing effect of 
the averaging partially contributes to this 
superiority but should be in a much less 
degree merely as a side effect comparing 
to the nonlinear filtering. It needs to 
point out that the ensemble averaging can only remove random error but not systematic bias error if an 
ensemble consists of only one model with one version of physics package. For such an ensemble 
system, effectiveness of error reduction by ensemble averaging should be measured with respect to the 
random portion of forecast error but not to the systematic error such as mean-error or the total error 
such as root-mean-squared error (RMSE) which is a mixture of random and systematic errors. 

Otherwise, one might be 
comparing the relative 
performance of two modeling 
systems but not two ensembling 
techniques or strategies, 
therefore the conclusion drawn 
might be misleading. However, 
for a multi-model and/or multi-
physics ensemble, bias error 
could also be reduced by 
ensemble averaging due to 
possibly different biases 
possessed in different schemes 
or models. Similar to ensemble 
mean, ensemble median forecast 
should verify the best too on 
average. To measure ensemble 
mean/median forecast accuracy, 
all methods normally used in 
evaluating deterministic single 
forecasts can also be applied 
such as Threat score, Equitable 
Threat score, RMSE and 
correlation etc.  

Figure 7   21-member NCEP SREF forecasts of the 
hurricane Ernesto (2006) track: individual members at 
the left and ensemble mean at the right with the 
observed track (hurricane symbols). [Courtesy of Mr. 
Timothy Marchok of GFDL/NOAA] 

Figure 8   The spread-skill relationship between ensemble spread and 
mean absolute forecast error, <|forecast – verification|>, of 63-h 
forecasts of u component of 850-hpa wind of NCEP SREF. Each 
point represents the mean error of 1000 forecasts with similar 
values of ensemble spread. [Courtesy of Dr. Mark S. Roulston of 
UKMO] 
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Figure 9  Two snapshots of spatial distribution of 87-h mean-forecast 
error and spread from NCEP SREF. Upper panel is for 850-hpa 
relative humidity initiated at 09z, 21 May 2007. Lower panel for 
500-hpa height initiated at 21z, 27 Feb, 2006. Left: error; right: 
spread. 

For a good ensemble 
system, ensemble spread should 
be a good indicator of possible 
forecast error distribution since 
spread should reflect the true 
predictability of a flow. Large 
(small) spread indicates less 
(more) predictable event, while 
less (more) predictable event is 
more (less) difficult to forecast 
and should have wider 
(narrower) error range. 
Therefore, spread and absolute 
error of ensemble mean forecast 
should be positively correlated 
on average such as shown in Fig. 
8, which is called spread-skill 
relation (Whitaker and Loughe, 
1998; Roulston, 2005; Grimit 
and Mass, 2007). Figure 9 is a 
snapshot of the spatial 
distributions of the forecast 
error of ensemble mean and the 
ensemble spread from the NCEP 
SREF, which does show good 
relation between spread and 
error in the spatial pattern of 
large-scale. Figure 10 shows 
the spatial correlation of 
various variables averaged 
over a period of about a month. 
We can see that such 
correlation exceeds 50% at day 
3.5 for sea-level pressure, 
500hpa height and 2m 
temperature, which is 
comparable to or even better 
than the quality of quantitative 
precipitation forecast by the 
current state-of-the-art NWP 
models and, therefore, skillful 
in providing useful guidance to 
forecasters. It’s also interesting 
to notice that the spread-skill 
correlation of sea-level 
pressure and 500hpa height 
increases steadily with forecast 

Probably better than the current model’s skill in predicting warm season precip! 

Figure 10  Spatial correlation (%) between ensemble spread and 
absolute error of mean-forecast of 9z cycle of NCEP SREF 
averaged over a period from May 13, 2007 to June 7, 2007 for 
various forecast variables. 
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time and remains below 30% at day 1. This could imply that the current ensemble technique used by 
NCEP SREF might not be suitable for very short range forecast (0-24hr), which is a subject worth 
being investigated. Many examine the spread-skill relation by simply comparing two domain-averaged 
curves of spread vs. RMSE of ensemble mean. By doing so, one needs to keep in mind that the 
closeness of the spread curve to the error curve is only a necessary condition but not a sufficient 
condition in measuring true spread-skill relation since their actual spatial patterns might not match to 
each other although their domain-wide summary statistics does. To avoid this, the comparison between 
spread and error must be carried out point by point in space. Spatial correlation, as discussed above, is 
one way to do. Another way is the rank histogram or rank distribution known as Talagrand 
Diagram/Distribution initially proposed by Talagrand et. al. (1997) and Anderson (1996) and late also 
documented by Hamill (2001). For a good ensemble system, truth acts just like one of the ensemble 
members and is not distinguishable from them. In other words, truth has equal chance to be anywhere 
between any two members. In Talagrand Distribution, all n ensemble members are first sorted out in 
order from smallest to biggest in value and form n+1 bins including two endings at a given point and 
time. Then, the chance of truth entering each bin is counted point by point and summed over a region 
and a period of time. If the resulting distribution of the chance over all bins is flat (--), the truth has the 
same statistical properties as all ensemble members, then ensemble spread is reliable and reflects true 
error distribution (perfect spread); if the distribution is in “upside down” U shape, spread over 
estimates forecast uncertainty (over-dispersive); if the distribution shows L shape, forecasts have high-
bias; if shows “reversed” L shape, forecasts have low-bias; and if the distribution is in U shape, it 
indicates either spread under 
estimates uncertainty (under-
dispersive) or some forecasts have 
low-bias and some high-bias. Figure 
11 is an example of this, showing 
quite satisfactory spread of 500hpa 
height from NCEP SREF. Even for a 
perfect but finite ensemble system 
with n members, one should always 
expect [2/(n+1)x100] % (the sum of 
two end bins) of the time that truth 
would fall outside the ensemble 
cloud (outlier) and [(n-
1)/(n+1)x100] % chance that the 
ensemble cloud would encompass 
the truth. To obtain more reliable 
assessment out of Talagrand 
Distribution, Minimum Spanning 
Tree approach is sometimes used to 
aid the calculation (Smith and 
Hansen, 2004; Wilks, 2004; Gombos 
et. al., 2007). 

Figure 11  Talagrand distribution of 500-hpa height 
ensemble forecasts at 87h lead time averaged over a 
period from May 13, 2007 to June 7, 2007, based on 
NCEP SREF data. It indicates slight low bias. 

There are two attributes to measure the usefulness of a probabilistic forecast: reliability and 
resolution (Jolliffe and Stephenson, 2003; Roulston and Smith, 2002; Atger, 1999b). In a reliable 
probabilistic forecast, a probability really means what its surface value says. For example, a perfectly 
reliable 60% forecast of an event means that in 60 times out of 100 such “60%” forecasts (either 
spanning in space or in time) the event will actually occur and 40 times not occur. A median forecast 
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(50%) should verify half of the time. This property can be measured by the Reliability Score (Wilks, 
2006). A perfect Reliability Score curve is a diagonal line with x-axis in forecast probability and y-axis 
in observed frequency of the predicted event.  Figure 12 shows an example of it based on NCEP SREF. 
A reliable probabilistic forecast has, however, no ability to tell which particular probabilistic forecast 
would verify and which one wouldn’t. The ability to distinguish the ones that would occur from those 
that would not occur is called Resolution. The resolution is related to the sharpness of probability 
density function (PDF). The sharper a PDF is, the higher resolution or the more skill or the more 
information a probabilistic forecast has. A perfect deterministic single forecast has perfect resolution 
(perfect reliability too): full capability of distinguishing “yes” event from “no” event and yes means 
yes and no means no. Climatology forecast is perfectly reliable but has no resolution.  When a PDF 
distribution becomes as flat as climatology PDF, a probabilistic forecast becomes no skill although it’s 
perfectly reliable. So, one can see that as long as a probabilistic forecast is reliable, the higher the 
resolution is, the more valuable a probabilistic forecast will be. Reliability reflects how well IC and 
model physics etc. are perturbed in an EPS. Good spread-skill relation is a basis to have a reliable 
probabilistic forecast. However, resolution cannot be improved through ensemble technique but only 
through improvement of model and 
IC quality themselves. Note that 
reliability score can be severely 
contaminated by model systematic 
bias, while resolution is mainly 
related to and affected by random 
error. Therefore, removing model 
systematic bias can improve 
reliability but not resolution in a 
probabilistic forecast. Since 
ensemble averaging can reduce 
random error, it improves resolution 
for a single deterministic forecast. 
Spatial correlation (to truth) is a way 
to measure resolution since it reflects 
random error (not systematic error) 
for a single forecast. To assess 
probabilistic forecast accuracy, many 
other scores are also used such as 
Brier score (BS, Brier, 1950) for 
one-category (e.g., rain or no rain) event and Ranked Probabilistic score (RPS, Epstein, 1969; Murphy, 
1969 and 1971; Wilks, 2006 and Du et. al., 1997) for multiple Mutually Exclusive and Collectively 
Exhaustive categories or Continuous Ranked Probability score (CRPS) for continuous variables 
(Brown, 1974; Unger, 1985; Grimit et. al., 2006). Analogous to RMSE in single forecast verification, 
BS and RPS are the average deviation between predicted probabilities for a set of events and their 
outcomes, so a lower score represents higher accuracy. 0 is perfect and 1 (J-1) the worst in BS (RPS), 
where J is the number of event categories. Similar to RMSE, BS and RPS measure total error and are 
contributed by both reliability and resolution. Traditionally, BS, RPS and CRPS etc. can be 
decomposed into reliability, resolution and uncertainty components (Hersback, 2000). Relative 
Operating Characteristic (ROC) diagram is another tool often used to assess probabilistic forecast 
using False Alarm Rate (FAR) as x-axis and Hit Rate (HR) as y-axis (Harvey et. al., 1992). An ideal 
forecast has 0% FAR and 100% HR, while a worst forecast 100% FAR and 0% HR. When HR and 

Figure 12   Reliability score of U-component of 250-hpa wind 
speed probability >= 20m/s at 45h lead time averaged over 
a period from May 13, 2007 to June 7, 2007, based on 
NCEP SREF data. 
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FAR are evenly divided (50% each), it denotes a no-skill forecast shown by a diagonal line in the ROC 
diagram such as climatological forecast. Area under the ROC curve (AUC) is used to quantify this 
score: 1 for perfect, 0 for worst and 0.5 for no-skill forecast. Motivated by search for a metric that 
relates ensemble forecast performance to things that customers will actually care about, Economic 
Value (EV) score is developed (Richardson, 2000; Zhu et. al., 2002). Calculation of EV is based on the 
two components of ROC (FAR and HR) as well as a cost-lost ratio which is closely related to 
customer’s dependency on weather. Most of the above scores are sometimes converted into skill-score 
format with respect to a same score of a reference forecast such as climatology to have a better idea 
about the relative performance of the forecast. Cautious is needed when using climatology to calculate 
forecast skill to avoid possible overestimation of skill scores due to possibly different climatologies 
used (Hamill and Juras, 2007). 

Finally, one should keep in mind that no matter how an EPS is verified, a good EPS forecast 
should demonstrate the following three general properties: the consistency from one cycle to another 
(probability is found much more consistent than a single-value forecast is), the quality (for single-value 
forecast) or reliability (for probabilistic forecast) regarding distance between forecast and observation, 
and the value or benefit realized from action taken by considering the forecast information. 
 
7.  How to communicate forecast uncertainty and use probability information in decision-
making process? 

No matter how accurate a forecast is, a forecast is valuable only until it is correctly understood 
and used by an end-user to make a decision and take a necessary action upon it (Murphy, 1985). 
Therefore, the way to effectively and accurately communicate a forecast to end-users is critical since it 
determines what kind of information a user might get. This is particularly true and important for a 
forecast in probabilistic form. A same piece of probability information can lead one to take very 
different actions based on ways of expression. For example, a psychological experiment shows that 
given two jars, one with 1 red and 9 white balls and another with 10 red and 90 white balls in it 
respectively, if one can randomly pick one ball (only once) out of any one of the two jars of his own 
choice and wins an award if the ball he picks is red, it’s found that one is more likely to go to the jar 
with 100 balls to play the gamble hoping more chance (10 instead of 1 red balls!) to pick a red ball 
although the probability is exactly the same 10% mathematically. In general, what a user gets is often 
less than what we tell and what we tell is often less than what we know, which indicates rooms for 
improvement in communicating weather information. How to better convey probabilistic forecast 
information to end-users is still new to meteorological community and needs to be carefully studied 
together with scientists in behavioral sciences.  

How to apply probabilistic information to decision-making is often most confusing to many 
people. One might complain what should I do with it if a probability says 50%, half right half wrong? 
As discussed in the Part 6, given a reliable ensemble system, a 50% forecast means that in 50 times out 
of 100 such “50%” forecasts of the event will actually occur and 50 times not occur. Thus, this 
information has significant economical value to a specific business based on its dependence on weather. 
Table 1 lists possible economic losses and costs involved in a damage-causing weather event under 
various decisions, where Lu is the loss that cannot be protected against, Lp the loss that can be 
protected against and C the cost of protection. The benefit of taking action if the event does occur is 
the difference between L and (Lu + C), while the risk of taking action is wasting the cost C if the event 
doesn’t occur. Therefore, for a reliable P% forecast, the possible benefit and risk are, respectively, 

                                 Benefit = P% x [L – (Lu + C)] = P% (Lp - C)                                 (6) 
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                                 Risk = (1-P%) x C                                                                            (7) 

For a reliable P% 
probabilistic forecast 

Action taken (as “yes” 
forecast) 

No action taken (as “no” 
forecast) 

Event occur (p%) Smaller mitigated loss Lu + a 
cost C with possibility of P% 

Bigger total Loss L=Lp+Lu 
with possibility of P% 

Event not occur (1-p%) No loss but a cost C with 
possibility of (1-P%) 

No cost and no loss with 
possibility of (1-P%) 

Table 1   Potential economic loss and cost involved in a weather forecast by decisions. 

Logically, a decision should be made based on the Benefit/Risk ratio. When the ratio > 1.0, one 
should take action; when the ratio < 1.0, no action; when the ratio close to 1.0, either way might result 
in similar economic consequence. The Benefit/Risk ratio (related to Lp and C) is strongly user 
dependent. Figure 13 shows that “user 1” is very sensitive to weather and takes action when 
probability is close to 20%, 
“user 3” is not much 
dependant on weather and 
takes no action until 
probability approaches to 
80%, “user 2” is 
moderately dependent on 
weather and takes action 
when probability is around 
50%, and “user 4” is totally 
weather independent and 
takes no action at all no 
matter how accurate a 
forecast is. Obviously, this 
ratio varies also with 
location such as city or 
countryside, time such as 
weekday or weekend, rush 
hour or non-rush hour, and 
event significance such as 
casual or formal activities, 
political or non-political gatherings etc.. To better serve society and people, meteorologists should 
work together with individual end-users to carefully develop optimal decision-making tools based on 
Benefit/Risk ratio to maximize the utility of probabilistic weather forecasting information. 

Benefit/Risk ratio

User 1

User 2
User 3

1.0
User 4

0.0 10       20        30       40       50        60        70     80        90       100%
prob

Economic value (Benefit/Risk ratio) based decision-making diagram

Figure 13   Illustration of an economic value (Benefit/Risk ratio) based 
decision-making diagram for end-users using probabilistic weather 
Information. 

Please note that besides quantitatively conveying forecast uncertainty such as probability, forecast 
uncertainty can often be expressed qualitatively too such as via tone of voice, choice of words and 
even body language especially in TV or radio broadcasting to general public. Some kind of explanation 
why this particular forecast is to be so uncertain will be very helpful to users in correctly receiving 
information and making best decisions. For example, a forecaster needs to frankly explain to public 
that the precipitation type, snow or rain, is very hard to be determined but both are possible for 
tomorrow’s weather because the local area is just near the freezing line (0°C or 32°F temperature zone). 
 

Science & Technology Infusion 
Lecture Series 



                             Science and Technology Infusion Climate Bulletin                                December 2007 26 
 

 
NOAA’s National Weather Service 
Office of Science and Technology 

8.   What is the impact on downstream applications? 
As meteorological ensembles (met-ensemble) become available as part of real-time operation at 

more and more NWP centers, it’s a growing area that many downstream prediction systems which 
strongly depend on meteorological forecasts as their inputs are also gradually deviating from 
traditional single-value input paradigm by actively testing how to couple with a met-ensemble system 
to quantify the forecast uncertainties in their downstream predictions. 

Such downstream systems are but not limited to hydrology, air quality, transportation and 
dispersion, ocean waves, ice drifting, costal storm surge, and electricity generating etc.. Hydrological 
prediction is sensitive to precipitation information. Uncertainty in precipitation amount and type 
(liquid or solid) and maybe also in temperature will certainly cause large uncertainty in hydrological 
prediction of flooding, runoff and stream/river flow in both short term such as flash flood and long 
term such as snow-melting. Unreliable probability of precipitation forecast caused by model bias and 
imperfect met-ensemble as well as the mismatch in spatial scale between coarse model resolution of 
met-ensemble and fine scale of river basin or catchment are main challenges for a hydrological 
prediction system to correctly use met-ensemble information (Franz, et. al., 2005; Schaake, et. al., 
2006). Therefore, downscaling and post-calibration of met-ensemble data is extremely important to 
hydrological application. Many meteorological fields such as temperature, advection, convection, 
precipitating process, radiation and especially surface and planetary boundary layer (PBL) properties 
like turbulence play important roles in controlling air quality and the transportation and dispersion 
process of pollutant. Those meteorological fields often exhibit large forecast uncertainties. Therefore, 
predicting air quality and dispersion process must suffer large uncertainty too. This issue has now been 
paid much attention by air-quality modelers and homeland security dispersion modeling community 
although how to properly simulate PBL-related uncertainties in a met-ensemble is still an issue yet to 
be researched. Since predictions in ocean surface wave, ice drifting and coastal storm surge are mainly 
driven by strong surface wind which possesses large forecast uncertainty, coupling with met-ensemble 
is also underway in those downstream prediction systems. To quantify such forecast uncertainty, 
NCEP has already implemented a wind-driven ocean-wave ensemble system in operation (Chen, 2006). 
Application to electricity generation is also popular in energy companies (Stensrud et. al., 2006). In all 
those downstream applications, most of them directly use individual met-ensemble members to drive a 
multiple of downstream predictions (a more expensive way in computing), while some use only 
forecast variance derived from met-ensemble to quantify uncertainty of a downstream prediction (a 
less expensive way in computing) such as in dispersion modeling (Warner et. al., 2002). 
 

9.   Shifting operational forecast paradigm 
From the discussion in Part 2, one can see that there is a fundamental shift in NWP practice and 

philosophy from the single forecast-based paradigm to the ensemble-based one (Fig. 14). Four main 
differences are summarized below. First, the former views a forecast as a deterministic process 
expressed by a single value hoping to have a single best shot, while the latter as a stochastic process 
(within the range of uncertainty) expressed by probabilistic distribution hoping to address forecast 
uncertainty alone with a most probable solution. In other words, besides providing a most probable and 
improved single solution an ensemble also provides extra forecast uncertainty information comparing 
to a single-value forecast (see Part 4). Therefore, there is nothing to loss but purely gain (complete) 
when the NWP paradigm shifts from the single-value forecasting to the ensemble forecasting. Besides 
the omitting of forecast uncertainty, uncertainty in observation and ICs is also ignored in single-
forecast based NWP, while, in ensemble-based NWP, observation should also be expressed by a 
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distribution in data assimilation process and multiple analyses would be created to form an ensemble 
of ICs for model integration to consider uncertainties in both observation and data assimilation 
procedure. As science and technology advances, ensemble forecasting should become a main tool in 
weather, climate and water forecasting. In order to smoothly complete this paradigm transition, 
training and education is an urgent issue.  Meteorologists and end-users need to work together to 
develop strategies of how effectively and correctly using uncertainty and probabilistic information in 
decision-making process to benefit the entire society the best. The recent study report published by the 
U.S. National Research Council of National Academy of Sciences - Completing the Forecast: 
Characterizing and Communicating Uncertainty for Better Decisions Using Weather and Climate 
Forecasts - is a good example of this effort (NRC, 2006). UCAR COMET classroom training courses 
(http://www.comet.ucar.edu/class/index.html) and local Weather Forecasting Offices’ ensemble 
training workshops are all good formats in this training effort. 

Figure 14   Traditional single-forecast based NWP paradigm vs. new integrated, ensemble-forecast 
based NWP paradigm. 

Secondly, traditional single-forecast based NWP is a one-way system: observation determines 
model prediction but with no feedback from prediction to observation. However, in reality, error also 
exists in observation and impacts forecast accuracy in a flow-dependent way, i.e. it may affect a 
forecast significantly in one time (or over one region or for one weather system) but not much on 
another time (region or system). Therefore, a two-way system is desired: based on the estimation of 
potential forecast error over a region of interest, observation over a certain upstream region might need 
to be adjusted and improved accordingly too. Ensemble forecasting provides a bridge to make this two-
way system possible. In an ensemble system with good spread-skill relation (see Part 6), the ensemble 
should be able to identify those weather systems associated with potential large errors and could also 
be used to trace the errors back to locate possible source regions in upstream using ensemble spread 
information. To improve the forecast, extra observations might be made over those source regions 
being identified. Or opposite action can be considered: less observation such as satellite data can be 
used in data assimilation when weather is calm to save resources. This process is known as adaptive or 
target observation technique, which is another new frontier of NWP (Palmer et. al., 1998; Bishop and 
Toth, 1999; Pu and Kalnay, 1999; Szunyogh et. al., 2000; Bishop et. al. 2001; Majumdar et. al., 2002). 
Obviously, this two-way approach is more sounding both scientifically and economically. Interactive 
two-way NWP system has been emphasized as one of the main goals in the on-going international joint 
research project GIFS (global interactive forecasting system). 

Thirdly, although the estimation of forecast error distribution in the single-forecast paradigm is 
also possible via historical forecast data (see Part 2), it’s, however, not flow dependent and doesn’t 
reflect the true predictability or “error of the day”, while the dynamical ensemble spread is flow-
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dependent, does reflect “error of the day”, and, therefore, provides more situation-relevant information 
for better decision-making. No doubt, all the above three changes are reflecting a step forward in 
science and technology. 

Lastly, since it’s hard for human to think nonlinearly, forecasters will eventually not be able to 
keep up with NWP model’s thinking someday when model forecast is accurately enough with 
continuing improvement of model and data quality. At that point, forecasters will have to mainly act 
like broadcasters or messengers by passively passing a model forecast to public or end-users with not 
much value added by forecasters’ human role if single deterministic forecast is provided. While in the 
new era of ensemble forecasting, forecaster’s human role will remain important and actively play a key 
role in the process of forecast-making in the following two folds. Although an ensemble provides 
multiple possible solutions, only one of them will eventually realize in reality. Therefore, a forecaster 
can act as an interactive “live” post-processing of the raw ensemble forecasts. For example, he might 
use other available data and the newest observations as well as his experiences to weigh each ensemble 
solution or filter out some “unlikely” members to possibly narrow forecast uncertainty. At the same 
time, forecasters should give proper physical interpretation of each distinct possible ensemble solutions 
to end-users for them to make better decisions and, therefore, provide an enhanced and value-added 
service to user community. 

In one word, the core of switching from single-forecast paradigm to ensemble-forecast paradigm 
is to provide better service to user community to meet the variety of needs of our customers by 
producing a more accurate and complete rather than an overly simplified forecast to truly reflect the 
complex nature of weather, climate and water systems. 
 

10.   Future trend of ensemble development 
  Ensemble forecasting is still in its infant stage and a new frontier of NWP family and has many 

areas to be yet developed. Below are listed a few potential areas.  

(a) Complimentary role of lower-resolution (low-res) ensemble and higher-resolution (hi-res) 
single forecast. Hi-res single run has smaller-scale detail spatial features and is more accurate for short 
range in general but lacks of uncertainty information, while low-res ensemble provides uncertainty 
information but is less accurate for short range and lacks of smaller-scale features. How to best 
combine low-res ensemble with hi-res single run is an important and practical issue which needs to be 
further explored (Roebber et. al., 2004; Kong et. al., 2006 and 2007). Hybrid Ensembling approach is 
one of such efforts, which superposes forecast variances from low-res ensemble on a single hi-res run 
by adding the difference between hi-res and low-res control forecasts to each ensemble members to 
improve the overall performance of an ensemble (Du, 2004). This method is found very useful and 
effective in improving an ensemble and has been operationally implemented for both global and 
regional EPSs at NCEP. Similar approach could also be applied to ETKF-based data assimilation (Gao 
et. al., 2007). 

(b) Adaptive ensemble systems. Flow-dependent coupling among different scale EPSs might be 
desired. For example, a three-tier (global, regional and local) flow-dependent adaptive system could 
work as follows. A regional EPS varies its membership and model spatial resolution based on large-
scale flow situation guided by a global EPS: if the global EPS projects less predictable flow or high-
impact potential over the region, more members and higher resolution should be used to run the 
regional ensemble; otherwise, fewer members with coarser resolution could be used by the regional 
EPS. A global or larger-domain EPS should also determine where to run and which possibly distinct 
clusters/analyses to initiate a hi-res local EPS focusing on individual high-impact event or local flow 
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for special needs (Molteni et. al., 2001). However, it should be carefully studied how to effectively 
couple multi-scale systems with each other to provide users maximum useful forecast information: 
does the smaller-scale EPS act purely as a downscaling tool of the larger-scale EPS by sharing same 
ICs, LBCs and perturbations or should each system have independent inputs to maximize diversity by 
using different ICs, LBCs and perturbations? Adaptive or manual-interactively manipulated 
perturbations in both IC and model configuration depending on specific weather systems or features of 
your interest, seasons and geographic regions might be found effective too in a local-scale ensemble 
forecasting (Homar et. al., 2006). 

(c) Coupling with data assimilation (DA) process. With ETKF or similar technique, ensemble 
forecasting and DA can be coupled as one unified NWP component: ensemble provides truly flow-
dependent background error to DA, while DA provides multiple analyses to initiate the ensemble 
model integrations with more realistic IC perturbations truly representing “error of the day” (see Part 3 
(5)). 

(d) Flow-dependent dynamical post-processing methods are needed as discussed in Part 5. How to 
combining ensemble approach with traditional statistical approach such as ensemble MOS to produce 
better forecast guidance should be a fruitful area for exploration too. 

(e) Using ensemble in adaptive observation (Bishop and Toth, 1999; Bishop et. al. 2001; 
Majumdar et. al., 2002; Palmer et. al., 1998). How to effectively use ensemble information for adaptive 
observation or targeting is still in its infant stage and more research and field experiments are needed. 
Current limited efforts are mainly focusing on large-scale winter storms of relatively higher 
predictability. Using regional ensemble to target warm season convective systems and heavy 
precipitation is obviously important but a more challenging task (Du et. al, 2007b). When forecast 
error is propagating at a mixture of both phase-speed and group-speed, it’s obviously a more complex 
situation to be investigated in targeting technique. 

(f) Ensemble dynamics. A complete and mature theoretical framework is needed for ensemble 
forecasting which basically doesn’t exist at the moment. It’s little known and researched about the 
error dynamics. We need to precisely describe how error evolves and propagates in the governing 
equations of a model to establish a theoretical ensemble dynamics (Farrell, 1990; Nicolis, 2004; 
Vannitsem and Toth, 2002).  

(g) To better serve user community, broad efforts are needed to understand, communicate and 
work with specific end-users to develop optimal economic value based decision-making strategies by 
scientifically incorporating forecast uncertainty information. The newly established American 
Meteorological Society’s Ad Hoc Committee on Uncertainty in Forecasts is a good first step of this. 

(h) Last but not least, a highly interactive, flexible and user-friendly visual display software 
capability needs to be developed for easy manipulating large amount of ensemble data and generating 
various ensemble products as well as performing ensemble verification. Help from software engineers 
is obviously necessary on this effort. 
 

11.   Summary 
Although, given 100% accurate ICs and other conditions, the atmospheric system itself and 

numerical prediction models should be deterministic in theory. But, in reality, due to intrinsic 
uncertainties in IC and model configurations plus chaotic nature of nonlinear models, forecast 
uncertainty and predictability limit is a very real and important property of NWP. Without quantifying 
uncertainty, a forecast is incomplete. A complete forecast should be in a probabilistic distribution with 
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uncertainty expressed but not in a single deterministic value. Ensemble forecasting is a dynamical 
approach to quantify forecast uncertainty. It’s a relatively new but a rapidly developing branch of 
NWP and expected to become a main tool in weather, climate and water prediction in near future. 
Ensemble forecasting is most valuable when large uncertainty is around and forecasters don’t know 
what solution to choose from in mainly high-impact events and has minimal value when weather is 
quiescent and highly predictable (although one still needs ensemble to identify such occasions). 
Currently, many major NWP centers around the world have already operationally implemented various 
ensemble prediction systems as part of their daily production although those EPSs are still in primitive 
and evolving stage. More and more forecasters and other users are lean toward using ensemble 
products instead of single deterministic model run nowadays. This trend will certainly continue in 
years to come. The ensemble-based NWP paradigm is superior to the single-value base forecast by 
providing flow-dependent uncertainty information besides an improved most probably single solution 
and taking observation and IC errors into account too. To complete a smooth transition from single-
forecast based paradigm to ensemble based one, much effort is needed. Education, coordination and 
training should play a key role in this transition. The recent U.S. National Research Council report - 
Completing the Forecast: Characterizing and Communicating Uncertainty for Better Decisions Using 
Weather and Climate Forecasts - is a good example of this effort. The currently going on UCAR 
COMET classroom training courses and local weather forecasting office’s training workshop etc. are 
all good formats in training and education efforts. 

The primary mission of ensemble forecasting is to reliably quantify forecast uncertainty and 
accurately describe a flow-dependent forecast error distribution to have the truth be always 
encompassed by ensemble cloud. In general, three types of product can be derived from an ensemble: a 
most probable single solution or consensus forecast, uncertainty measure and a distribution of all 
possible solutions. There are still many areas to be explored to maximize the utility of an ensemble, for 
example, how to better express and convey ensemble information to users in a comprehensive and 
easily-understandable way; complementary role between higher-resolution single model run and 
lower-resolution ensemble forecasts; better post-processing of ensemble forecasts including statistical 
and dynamical approaches, ensemble MOS, usage of re-forecasting or hindcast dataset and 
downscaling; and economic-value based decision-making process in using forecast uncertainty and 
probabilistic information.  

To better accomplish the ensemble forecasting mission, a 3-dimentional type of EPS is needed by 
fully capturing all uncertainty sources from IC dimension, model-configuration dimension and history-
memory dimension. Certainly, many needs to be further investigated and improved such as how to best 
couple with data assimilation in IC perturbation generating, stochastic physics perturbation and the 
value of history-memory dimension. Flow-dependent adaptive multi-EPS across the full spectrum of 
multi-scales is an area of interest and exploration. Theoretical ensemble or error dynamics is yet to be 
developed to fully understand how error evolves and propagates in the governing equations of a model. 

Uncertainty is the only thing certain in the real world. Downstream application of meteorological 
ensemble forecasting is high in demanding and a rapidly growing area. Besides driving many 
downstream prediction systems like hydrology, air quality, storm surge, ocean wave, dispersion, 
geological prediction and electricity generation etc., adaptive/targeted observation is a special area of 
application within meteorology itself. Taking uncertainty into picture is a step forward in science and a 
way to better serve society and people. For the further reading about predictability of weather and 
climate, readers are referred to Palmer and Hagedorn (2006). 
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